Hello I have some errors while implementing variational autoencoder

0 votes
def dense_layers(sizes):
    return tfk.Sequential([tfkl.Dense(size, activation=tf.nn.leaky_relu) for size in sizes])
encoder = tfk.Sequential([
    tfkl.InputLayer(input_shape=input_shape, name='encoder_input'),
    dense_layers(intermediary_dims),
    tfkl.Dense(latent_dim, activation = tf.nn.leaky_relu),
    tfkl.Dense(tfpl.MultivariateNormalTriL.params_size(latent_dim), activation=None),
    tfpl.MultivariateNormalTriL(latent_dim,activity_regularizer=tfpl.KLDivergenceRegularizer(prior)),
], name='encoder')

encoder.summary()
plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)

decoder = tfk.Sequential([
    tfkl.InputLayer(input_shape=[latent_dim]),
    dense_layers(reversed(intermediary_dims)),
    tfkl.Dense(tfpl.IndependentNormal.params_size(original_dim), activation=None),
    tfpl.IndependentNormal(original_dim),
], name='decoder')

decoder.summary()
plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)

vae = tfk.Model(inputs=encoder.inputs,
                outputs=decoder(encoder.outputs[0]),
                name='vae_mlp')

negloglik = lambda x, rv_x: -rv_x.log_prob(x)

vae.compile(optimizer=tf.keras.optimizers.Nadam(), 
            loss=negloglik)

vae.summary()
plot_model(vae,
           to_file='vae_mlp.png',
           show_shapes=True)




---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)

<ipython-input-29-236f8f195100> in <module>()
      7     tfkl.Dense(tfpl.MultivariateNormalTriL.params_size(latent_dim), activation=None),
      8     tfpl.MultivariateNormalTriL(latent_dim,activity_regularizer=tfpl.KLDivergenceRegularizer(prior)),
----> 9 ], name='encoder')
     10 
     11 encoder.summary()


9 frames

/usr/local/lib/python3.6/dist-packages/tensorflow_probability/python/layers/distribution_layer.py in kl_divergence_fn(distribution_a, distribution_b)
   1086       z = test_points_fn(distribution_a)
   1087       return tf.reduce_mean(
-> 1088           distribution_a.log_prob(z) - distribution_b.log_prob(z),
   1089           axis=test_points_reduce_axis)
   1090 


AttributeError: 'Tensor' object has no attribute 'log_prob'


May 18, 2019 in Machine Learning by anonymous

edited May 20, 2019 by Omkar 562 views

No answer to this question. Be the first to respond.

Your answer

Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.

Related Questions In Machine Learning

0 votes
1 answer

How do I create a decision tree?

Let us consider the following example. Suppose a ...READ MORE

answered May 13, 2019 in Machine Learning by Fatima
239 views
0 votes
1 answer
0 votes
0 answers
0 votes
2 answers
+1 vote
2 answers

how can i count the items in a list?

Syntax :            list. count(value) Code: colors = ['red', 'green', ...READ MORE

answered Jul 6, 2019 in Python by Neha
• 330 points

edited Jul 8, 2019 by Kalgi 1,735 views
0 votes
0 answers
0 votes
2 answers

ModuleNotFoundError: No module named 'tensorflow'

If you are using Anaconda, go to ...READ MORE

answered Nov 17, 2020 in Machine Learning by Vignesh
8,451 views