Hi @Dipti, you could try something like this:

import matplotlib
matplotlib.use('GTKAgg')
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
import pandas as pd
# Load CSV and columns
df = pd.read_csv("Housing.csv")
Y = df['price']
X = df['lotsize']
X=X.reshape(len(X),1)
Y=Y.reshape(len(Y),1)
# Split the data into training/testing sets
X_train = X[:-250]
X_test = X[-250:]
# Split the targets into training/testing sets
Y_train = Y[:-250]
Y_test = Y[-250:]
# Plot outputs
plt.scatter(X_test, Y_test, color='black')
plt.title('Test Data')
plt.xlabel('Size')
plt.ylabel('Price')
plt.xticks(())
plt.yticks(())
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(X_train, Y_train)
# Plot outputs
plt.plot(X_test, regr.predict(X_test), color='red',linewidth=3)
plt.show()