Getting rid of extra periods - cleaning data using R

0 votes

I have the following data

1) 100      |  101.25  | 102.25. | .   | .. | 201.5. |
2) 200.05.  |  200.56. | 205     | ..  | .  | 3000   |
3) 300.98   |  300.26. | 2001.56.| ... | 0.2| 5.65.  |

Expected output

1) 100   | 101.25   | 102.25  |NA | NA |201.5
2) 200.05|200.26    | 205     |NA | NA |3000
3) 300.98|300.26    |2001.26  |NA |0.2 |5.65
Nov 13, 2018 in Data Analytics by Ali
• 11,360 points
858 views

1 answer to this question.

0 votes

Just try removing the periods using sub function 

x <- c("101.25", "200.56.", "300.26")
x <- sub("\\.$", "", x)
answered Nov 13, 2018 by Maverick
• 10,840 points

Related Questions In Data Analytics

0 votes
1 answer

How to forecast season and trend of data using STL and ARIMA in R?

You can use the forecast.stl function for the ...READ MORE

answered May 19, 2018 in Data Analytics by DataKing99
• 8,250 points
2,195 views
0 votes
2 answers

what are the different ways of getting/reading data into for cleaning

Most used functions for reading or extracting ...READ MORE

answered Aug 23, 2019 in Data Analytics by anonymous
• 33,030 points
807 views
+1 vote
3 answers

How to change the value of a variable using R programming in a data frame?

Try this: df$symbol <- as.character(df$symbol) df$symbol[df$sym ...READ MORE

answered Jan 11, 2019 in Data Analytics by Tyrion anex
• 8,700 points
35,865 views
0 votes
1 answer
0 votes
1 answer

Replace comma with a period in data cleaning using R

You can use the scan function in ...READ MORE

answered Nov 13, 2018 in Data Analytics by Maverick
• 10,840 points
3,887 views
0 votes
1 answer

Cleaning a Data Frame Using Regexp in R

The simplest way: library(dplyr) library(stringi) df %>% mutate(NUMERO_APPEL.fix = ...READ MORE

answered Nov 13, 2018 in Data Analytics by Maverick
• 10,840 points
803 views
0 votes
1 answer

How do I remove unnecessary redundant data from a dataset?

You can use dimensionality reduction methods such ...READ MORE

answered Nov 13, 2018 in Data Analytics by Maverick
• 10,840 points
1,620 views
0 votes
1 answer

Manipulate character string using gsub() and perform multivariate data cleaning efficiently in R

gsubfn is perfect for this task: library(gsubfn) as.vector(sapply(gsubfn("[A-Z]", list(B="* 1", ...READ MORE

answered Nov 13, 2018 in Data Analytics by Maverick
• 10,840 points
872 views
0 votes
1 answer

Cleaning data using R

Try something like this: text1='"id","gender","age","category1","category2","category3","category4","category5","category6","category7","category8","category9","category10" 1,"Male",22,"movies","music","travel","cloths","grocery",,,,, 2,"Male",28,"travel","books","movies",,,,,,, 3,"Female",27,"rent","fuel","grocery","cloths",,,,,, 4,"Female",22,"rent","grocery","travel","movies","cloths",,,,, 5,"Female",22,"rent","online-shopping","utiliy",,,,,,,' d1 <- read.table(text=text1, sep=",", ...READ MORE

answered Nov 13, 2018 in Data Analytics by Maverick
• 10,840 points
633 views
0 votes
1 answer

Clean a set of data using R

Try this: NCM <- c(5,1,3,2,4) Mbrand <- c(1,5,3,4,2) fac<-factor(Mbrand, levels ...READ MORE

answered Nov 13, 2018 in Data Analytics by Maverick
• 10,840 points
720 views
webinar REGISTER FOR FREE WEBINAR X
REGISTER NOW
webinar_success Thank you for registering Join Edureka Meetup community for 100+ Free Webinars each month JOIN MEETUP GROUP