Java/J2EE and SOA (325 Blogs) Become a Certified Professional
AWS Global Infrastructure

Programming & Frameworks

Topics Covered
  • C Programming and Data Structures (41 Blogs)
  • Comprehensive Java Course (2 Blogs)
  • Java/J2EE and SOA (324 Blogs)
  • Spring Framework (8 Blogs)
SEE MORE

MI-new-launch

myMock Interview Service for Real Tech Jobs

myMock-widget-banner-bg

What is Semaphore in Java and its use?

Published on Oct 22,2019 129 Views
13 / 14 Blog from Java OOPS

MI-new-launch

myMock Interview Service for Real Tech Jobs

myMock-mobile-banner-bg

myMock Interview Service for Real Tech Jobs

  • Mock interview in latest tech domains i.e JAVA, AI, DEVOPS,etc
  • Get interviewed by leading tech experts
  • Real time assessment report and video recording

A Semaphore in Java controls access to a shared resource through a counter. It is a thread synchronization construct used to send signals between threads to avoid missed signals or guard a critical section. In this blog on Semaphores in Java, we will understand the concept in detail.
The following topics will be covered in this blog:

What is Semaphore in Java?

A semaphore is a variable used for the synchronization of processes which is used for managing concurrent processes. It is also used to control access to a common resource by multiple concurrent processes and avoid a race condition.

Types of semaphore –

  • Binary semaphore: A binary semaphore only takes only 0 and 1 as values and is used to implement mutual exclusion as well as synchronize concurrent processes.

  • Counting semaphore: The value of a counting semaphore at any point indicates the maximum number of processes that can enter the critical section at the exact same time.

Working of Semaphore

  • If semaphore count > 0, the thread acquires a permit, decrementing the semaphore’s count.

  • Else, the thread is blocked until a permit can be acquired.

  • When thread no longer needs access to a shared resource, it releases the permit, incrementing the semaphore count.

  • If another thread is waiting for a permit, then that thread will acquire a permit at that time.

Implementation of Semaphore

 
import java.util.concurrent.*; 

//Will take Resource as  shared class
class Resource 
{ 
	static int count = 0; 
} 

class MyDemo extends Demo 
{ 
	Semaphore sem; 
	String threadName; 
	public MyDemo(Semaphore sem, String threadName) 
	{ 
		super(threadName); 
		this.sem = sem; 
		this.threadName = threadName; 
	} 

	@Override
	public void run() { 
		
		// Run By X
		if(this.getName().equals("X")) 
		{ 
			System.out.println("Starting " + threadName); 
			try
			{ 
				// Will get the permit to access shared resource
				System.out.println(threadName + " waiting for a permit."); 
			
				// acquiring the lock 
				sem.acquire(); 
			
				System.out.println(threadName + " gets a permit."); 
		
				// Now, accessing the shared resource and rest will wait  
				
				for(int i=0; i < 7; i++) 
				{ 
					Resource.count++; 
					System.out.println(threadName + ": " + Resouce.count); 
		
					
					// Now thread Y will try  to execute 
					Thread.sleep(20); 
				} 
			} catch (InterruptedException exc) { 
					System.out.println(exc); 
				} 
		
				// Release the permit. 
				System.out.println(threadName + " releases the permit."); 
				sem.release(); 
		} 
		
		// run by thread Y 
		else
		{ 
			System.out.println("Starting " + threadName); 
			try
			{ 
				// First, Y will try to get permit
				System.out.println(threadName + " waiting for a permit."); 
			
				// acquiring the lock 
				sem.acquire(); 
			
				System.out.println(threadName + " gets a permit."); 
		
				// Now, accessing the shared resource and others will wait
				
				for(int i=0; i < 7; i++) 
				{ 
					Resource.count--; 
					System.out.println(threadName + ": " + Resource.count); 
		
					// Now, allowing a context switch -- if possible. 
					// for thread X to execute 
					Thread.sleep(20); 
				} 
			} catch (InterruptedException exc) { 
					System.out.println(exc); 
				} 
				// Release the permit. 
				System.out.println(threadName + " releases the permit."); 
				sem.release(); 
		} 
	} 
} 


public class SemTest 
{ 
	public static void main(String args[]) throws InterruptedException 
	{ 
		// creating a Semaphore object 
		// with number of permits 1
		Semaphore sem = new Semaphore(1); 
		
		// creating two threads with name X and Y 
		// Here thread X will increment and Y will decrement the counter
		MyDemo md1 = new MyDemo(sem, "X"); 
		MyDemo md2 = new MyDemo(sem, "Y"); 
		
		// stating threads X and Y 
		md1.start(); 
		md2.start(); 
		
		// waiting for threads X and Y 
		md1.join(); 
		mtd.join(); 
		
	
		System.out.println("count: " + Resource.count); 
	} 
} 

Output-
Starting X
Starting Y
X waiting for a permit
Y waiting for a permit
X:1
X:2
X:3
X:4
X:5
X:6
X:7
X releases the permit
Y gets the permit
Y:6
Y:5
Y:4
Y:3
Y:2
Y:1
Y:0
Y releases permit
count:0

With this, we come to an end of this blog on “Semaphores in Java”. If you wish to learn more about Java, check out the Java Certification Training by Edureka, a trusted online learning company with a network of more than 250,000 satisfied learners spread across the globe. Edureka’s Java J2EE and SOA training and certification course is designed for students and professionals who want to be a Java Developer. The course is designed to give you a head start into Java programming and train you for both core and advanced Java concepts along with various Java frameworks like Hibernate & Spring.

Got a question for us? Please mention it in the comments section of this “What is Semaphore in Java” blog and we will get back to you as soon as possible.

Comments
0 Comments

Browse Categories

webinar REGISTER FOR FREE WEBINAR
REGISTER NOW
webinar_success Thank you for registering Join Edureka Meetup community for 100+ Free Webinars each month JOIN MEETUP GROUP

Subscribe to our Newsletter, and get personalized recommendations.