Python Certification Training for Data Scienc ...
- 44k Enrolled Learners
- Weekend/Weekday
- Live Class
In this Data Science Interview Questions blog, I will introduce you to the most frequently asked questions on Data Science, Analytics and Machine Learning interviews. This blog is the perfect guide for you to learn all the concepts required to clear a Data Science interview. To get in-depth knowledge on Data Science, you can enroll for live Data Science Certification Training by Edureka with 24/7 support and lifetime access.
The following are the topics covered in our interview questions:
Before moving ahead, you may go through the recording of Data Science Interview Questions where our instructor has shared his experience and expertise that will help you to crack any Data Science.
Data Science is a blend of various tools, algorithms, and machine learning principles with the goal to discover hidden patterns from the raw data. How is this different from what statisticians have been doing for years?
The answer lies in the difference between explaining and predicting.
Supervised Learning | Unsupervised Learning |
1. Input data is labeled. | 1. Input data is unlabeled. |
2. Uses training dataset. | 2. Uses the input data set. |
3. Used for prediction. | 3. Used for analysis. |
4. Enables classification and regression. | 4. Enables Classification, Density Estimation, & Dimension Reduction |
The following are some of the important skills to possess which will come handy when performing data analysis using Python.
The following will help to tackle any problem in data analytics and machine learning.
Selection bias is a kind of error that occurs when the researcher decides who is going to be studied. It is usually associated with research where the selection of participants isn’t random. It is sometimes referred to as the selection effect. It is the distortion of statistical analysis, resulting from the method of collecting samples. If the selection bias is not taken into account, then some conclusions of the study may not be accurate.
The types of selection bias include:
In the wide format, a subject’s repeated responses will be in a single row, and each response is in a separate column. In the long format, each row is a one-time point per subject. You can recognize data in wide format by the fact that columns generally represent groups.
Data is usually distributed in different ways with a bias to the left or to the right or it can all be jumbled up.
However, there are chances that data is distributed around a central value without any bias to the left or right and reaches normal distribution in the form of a bell-shaped curve.
Figure: Normal distribution in a bell curve
The random variables are distributed in the form of a symmetrical bell-shaped curve.
Properties of Nornal Distribution:
It is a statistical hypothesis testing for a randomized experiment with two variables A and B.
The goal of A/B Testing is to identify any changes to the web page to maximize or increase the outcome of an interest. A/B testing is a fantastic method for figuring out the best online promotional and marketing strategies for your business. It can be used to test everything from website copy to sales emails to search ads
An example of this could be identifying the click-through rate for a banner ad.
Sensitivity is commonly used to validate the accuracy of a classifier (Logistic, SVM, Random Forest etc.).
Sensitivity is nothing but “Predicted True events/ Total events”. True events here are the events which were true and model also predicted them as true.
Calculation of seasonality is pretty straightforward.
Seasonality = ( True Positives ) / ( Positives in Actual Dependent Variable )
*where true positives are positive events which are correctly classified as positives.
In statistics and machine learning, one of the most common tasks is to fit a model to a set of training data, so as to be able to make reliable predictions on general untrained data.
In overfitting, a statistical model describes random error or noise instead of the underlying relationship. Overfitting occurs when a model is excessively complex, such as having too many parameters relative to the number of observations. A model that has been overfit has poor predictive performance, as it overreacts to minor fluctuations in the training data.
Underfitting occurs when a statistical model or machine learning algorithm cannot capture the underlying trend of the data. Underfitting would occur, for example, when fitting a linear model to non-linear data. Such a model too would have poor predictive performance.
We will prefer Python because of the following reasons:
Data cleaning can help in analysis because:
Univariate analyses are descriptive statistical analysis techniques which can be differentiated based on the number of variables involved at a given point of time. For example, the pie charts of sales based on territory involve only one variable and can the analysis can be referred to as univariate analysis.
The bivariate analysis attempts to understand the difference between two variables at a time as in a scatterplot. For example, analyzing the volume of sale and spending can be considered as an example of bivariate analysis.
Multivariate analysis deals with the study of more than two variables to understand the effect of variables on the responses.
Cluster sampling is a technique used when it becomes difficult to study the target population spread across a wide area and simple random sampling cannot be applied. Cluster Sample is a probability sample where each sampling unit is a collection or cluster of elements.
For eg., A researcher wants to survey the academic performance of high school students in Japan. He can divide the entire population of Japan into different clusters (cities). Then the researcher selects a number of clusters depending on his research through simple or systematic random sampling.
Let’s continue our Data Science Interview Questions blog with some more statistics questions.
Systematic sampling is a statistical technique where elements are selected from an ordered sampling frame. In systematic sampling, the list is progressed in a circular manner so once you reach the end of the list, it is progressed from the top again. The best example of systematic sampling is equal probability method.
Eigenvectors are used for understanding linear transformations. In data analysis, we usually calculate the eigenvectors for a correlation or covariance matrix. Eigenvectors are the directions along which a particular linear transformation acts by flipping, compressing or stretching.
Eigenvalue can be referred to as the strength of the transformation in the direction of eigenvector or the factor by which the compression occurs.
Let us first understand what false positives and false negatives are.
Example 1: In the medical field, assume you have to give chemotherapy to patients. Assume a patient comes to that hospital and he is tested positive for cancer, based on the lab prediction but he actually doesn’t have cancer. This is a case of false positive. Here it is of utmost danger to start chemotherapy on this patient when he actually does not have cancer. In the absence of cancerous cell, chemotherapy will do certain damage to his normal healthy cells and might lead to severe diseases, even cancer.
Example 2: Let’s say an e-commerce company decided to give $1000 Gift voucher to the customers whom they assume to purchase at least $10,000 worth of items. They send free voucher mail directly to 100 customers without any minimum purchase condition because they assume to make at least 20% profit on sold items above $10,000. Now the issue is if we send the $1000 gift vouchers to customers who have not actually purchased anything but are marked as having made $10,000 worth of purchase.
Example 1: Assume there is an airport ‘A’ which has received high-security threats and based on certain characteristics they identify whether a particular passenger can be a threat or not. Due to a shortage of staff, they decide to scan passengers being predicted as risk positives by their predictive model. What will happen if a true threat customer is being flagged as non-threat by airport model?
Example 2: What if Jury or judge decides to make a criminal go free?
Example 3: What if you rejected to marry a very good person based on your predictive model and you happen to meet him/her after a few years and realize that you had a false negative?
In the Banking industry giving loans is the primary source of making money but at the same time if your repayment rate is not good you will not make any profit, rather you will risk huge losses.
Banks don’t want to lose good customers and at the same point in time, they don’t want to acquire bad customers. In this scenario, both the false positives and false negatives become very important to measure.
A Validation set can be considered as a part of the training set as it is used for parameter selection and to avoid overfitting of the model being built.
On the other hand, a Test Set is used for testing or evaluating the performance of a trained machine learning model.
In simple terms, the differences can be summarized as; training set is to fit the parameters i.e. weights and test set is to assess the performance of the model i.e. evaluating the predictive power and generalization.
Cross-validation is a model validation technique for evaluating how the outcomes of statistical analysis will generalize to an Independent dataset. Mainly used in backgrounds where the objective is forecast and one wants to estimate how accurately a model will accomplish in practice.
The goal of cross-validation is to term a data set to test the model in the training phase (i.e. validation data set) in order to limit problems like overfitting and get an insight on how the model will generalize to an independent data set.
Machine Learning explores the study and construction of algorithms that can learn from and make predictions on data. Closely related to computational statistics. Used to devise complex models and algorithms that lend themselves to a prediction which in commercial use is known as predictive analytics.
Figure: Applications of Machine Learning
Supervised learning is the machine learning task of inferring a function from labeled training data. The training data consist of a set of training examples.
Algorithms: Support Vector Machines, Regression, Naive Bayes, Decision Trees, K-nearest Neighbor Algorithm and Neural Networks
E.g. If you built a fruit classifier, the labels will be “this is an orange, this is an apple and this is a banana”, based on showing the classifier examples of apples, oranges and bananas.
Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labeled responses.
Algorithms: Clustering, Anomaly Detection, Neural Networks and Latent Variable Models
E.g. In the same example, a fruit clustering will categorize as “fruits with soft skin and lots of dimples”, “fruits with shiny hard skin” and “elongated yellow fruits”.
The below diagram lists the most important classification algorithms.
Figure: Various Classification algorithms
Logistic Regression often referred as logit model is a technique to predict the binary outcome from a linear combination of predictor variables.
For example, if you want to predict whether a particular political leader will win the election or not. In this case, the outcome of prediction is binary i.e. 0 or 1 (Win/Lose). The predictor variables here would be the amount of money spent for election campaigning of a particular candidate, the amount of time spent in campaigning, etc.
Recommender Systems are a subclass of information filtering systems that are meant to predict the preferences or ratings that a user would give to a product. Recommender systems are widely used in movies, news, research articles, products, social tags, music, etc.
Examples include movie recommenders in IMDB, Netflix & BookMyShow, product recommenders in e-commerce sites like Amazon, eBay & Flipkart, YouTube video recommendations and game recommendations in Xbox.
Linear regression is a statistical technique where the score of a variable Y is predicted from the score of a second variable X. X is referred to as the predictor variable and Y as the criterion variable.
The process of filtering used by most of the recommender systems to find patterns or information by collaborating viewpoints, various data sources and multiple agents.
An example of collaborative filtering can be to predict the rating of a particular user based on his/her ratings for other movies and others’ ratings for all movies. This concept is widely used in recommending movies in IMDB, Netflix & BookMyShow, product recommenders in e-commerce sites like Amazon, eBay & Flipkart, YouTube video recommendations and game recommendations in Xbox.
Outlier values can be identified by using univariate or any other graphical analysis method. If the number of outlier values is few then they can be assessed individually but for a large number of outliers, the values can be substituted with either the 99th or the 1st percentile values.
All extreme values are not outlier values. The most common ways to treat outlier values
The following are the various steps involved in an analytics project:
The extent of the missing values is identified after identifying the variables with missing values. If any patterns are identified the analyst has to concentrate on them as it could lead to interesting and meaningful business insights.
If there are no patterns identified, then the missing values can be substituted with mean or median values (imputation) or they can simply be ignored. Assigning a default value which can be mean, minimum or maximum value. Getting into the data is important.
If it is a categorical variable, the default value is assigned. The missing value is assigned a default value. If you have a distribution of data coming, for normal distribution give the mean value.
If 80% of the values for a variable are missing then you can answer that you would be dropping the variable instead of treating the missing values.
Though the Clustering Algorithm is not specified, this question is mostly in reference to K-Means clustering where “K” defines the number of clusters. The objective of clustering is to group similar entities in a way that the entities within a group are similar to each other but the groups are different from each other.
For example, the following image shows three different groups.
Within Sum of squares is generally used to explain the homogeneity within a cluster. If you plot WSS for a range of number of clusters, you will get the plot shown below.
This is the widely used approach but few data scientists also use Hierarchical clustering first to create dendrograms and identify the distinct groups from there.
Now that we have seen the Machine Learning Questions, Let’s continue our Data Science Interview Questions blog with some Probability questions.
Probability of not seeing any shooting star in 15 minutes is
= 1 – P( Seeing one shooting star )
= 1 – 0.2 = 0.8
Probability of not seeing any shooting star in the period of one hour
= (0.8) ^ 4 = 0.4096
Probability of seeing at least one shooting star in the one hour
= 1 – P( Not seeing any star )
= 1 – 0.4096 = 0.5904
In the case of two children, there are 4 equally likely possibilities
BB, BG, GB and GG;
where B = Boy and G = Girl and the first letter denotes the first child.
From the question, we can exclude the first case of BB. Thus from the remaining 3 possibilities of BG, GB & BB, we have to find the probability of the case with two girls.
Thus, P(Having two girls given one girl) = 1 / 3
There are two ways of choosing the coin. One is to pick a fair coin and the other is to pick the one with two heads.
Probability of selecting fair coin = 999/1000 = 0.999
Probability of selecting unfair coin = 1/1000 = 0.001
Selecting 10 heads in a row = Selecting fair coin * Getting 10 heads + Selecting an unfair coin
P (A) = 0.999 * (1/2)^5 = 0.999 * (1/1024) = 0.000976
P (B) = 0.001 * 1 = 0.001
P( A / A + B ) = 0.000976 / (0.000976 + 0.001) = 0.4939
P( B / A + B ) = 0.001 / 0.001976 = 0.5061
Probability of selecting another head = P(A/A+B) * 0.5 + P(B/A+B) * 1 = 0.4939 * 0.5 + 0.5061 = 0.7531
Deep Learning is nothing but a paradigm of machine learning which has shown incredible promise in recent years. This is because of the fact that Deep Learning shows a great analogy with the functioning of the human brain.
Now although Deep Learning has been around for many years, the major breakthroughs from these techniques came just in recent years. This is because of two main reasons:
GPUs are multiple times faster and they help us build bigger and deeper deep learning models in comparatively less time than we required previously
Artificial Neural networks are a specific set of algorithms that have revolutionized machine learning. They are inspired by biological neural networks. Neural Networks can adapt to changing input so the network generates the best possible result without needing to redesign the output criteria.
Artificial Neural Networks works on the same principle as a biological Neural Network. It consists of inputs which get processed with weighted sums and Bias, with the help of Activation Functions.
To Understand Gradient Descent, Let’s understand what is a Gradient first.
A gradient measures how much the output of a function changes if you change the inputs a little bit. It simply measures the change in all weights with regard to the change in error. You can also think of a gradient as the slope of a function.
Gradient Descent can be thought of climbing down to the bottom of a valley, instead of climbing up a hill. This is because it is a minimization algorithm that minimizes a given function (Activation Function).
Backpropagation is a training algorithm used for multilayer neural network. In this method, we move the error from an end of the network to all weights inside the network and thus allowing efficient computation of the gradient.
It has the following steps:
The Activation function is used to introduce non-linearity into the neural network helping it to learn more complex function. Without which the neural network would be only able to learn linear function which is a linear combination of its input data. An activation function is a function in an artificial neuron that delivers an output based on inputs
Autoencoders are simple learning networks that aim to transform inputs into outputs with the minimum possible error. This means that we want the output to be as close to input as possible. We add a couple of layers between the input and the output, and the sizes of these layers are smaller than the input layer. The autoencoder receives unlabeled input which is then encoded to reconstruct the input.
Boltzmann machines have a simple learning algorithm that allows them to discover interesting features that represent complex regularities in the training data. The Boltzmann machine is basically used to optimize the weights and the quantity for the given problem. The learning algorithm is very slow in networks with many layers of feature detectors. “Restricted Boltzmann Machines” algorithm has a single layer of feature detectors which makes it faster than the rest.
I hope this set of Data Science Interview Questions and Answers will help you in preparing for your interviews. All the best!
Got a question for us? Please mention it in the comments section and we will get back to you at the earliest.
Edureka has a specially curated Data Science course which helps you gain expertise in Machine Learning Algorithms like K-Means Clustering, Decision Trees, Random Forest, Naive Bayes. You’ll learn the concepts of Statistics, Time Series, Text Mining and an introduction to Deep Learning as well. You’ll solve real-life case studies on Media, Healthcare, Social Media, Aviation, HR. New batches for this course are starting soon!!